
Identification of Coffee
Cultivation Areas in Brazil

Tova Perlman
MUSA 650 Final Project

Introduction

The Problem:

Here are what the images look like:

Dataset Description Value

Number of Images 2876

Image Size 64 x 64 pixels

Number of classes 2

Balance 50/50

True Color:

This dataset features satellite images of four different states in
Brazil. It is used to help manage and understand coffee cultivation
management and techniques. Thus, we are trying to identify
images that are good for growing coffee or not good. In other
words, we are solving a binary classification problem.

Classifiers

Experiment 1:
SVM:

We ran Gridsearch CV with 3 fold cross
validation and found that the optimal
hyperparameters for SVM were C: .01,
2 degrees and sigmoid Kernel.

Accuracy for SVM with optimal
parameters: 57%

Experiment 2:
Random Forest:

We ran Gridsearch CV with 3 fold cross
validation and found that the optimal
hyperparameters for Random Forest was
a max depth of 5 and the number of
estimators at 200.

Accuracy for Random Forest with
optimal parameters: 59%

This accuracy isn’t great…. Let’s see if we can do better with a
convolutional neural network

CNN Model Architecture Set Up
We set up a model architecture to use as our baseline and
then we tweaked it for various optimizers. In this set up, we
create four convolutional layers each with a max pooling and
dropout layers. Additionally, our filters are 16, 64, 128 and
128.

Hyperparameter Tuning
Various Parameters we tested:
Optimizers:
• RMSProp

o Learning Rates: .01,.001,.0001
• AdaDelta
• Adam
• SGD
• Nadam

Batch Size: 70, 100, 120
Epoch Size: 50, 100
Number of filters in model architecture: (16, 64, 128, 128)
(32, 64, 128, 128)
The filter size: (3,3) or (5,5)
Number of layers in model architecture: 4, 5

We spent a long time tuning our model to try to
increase the accuracy. The highest training accuracy we
got was with the RMSProp optimizer at 91%, however
this overfit to our model as the actual accuracy was at
68%.
Our major focus for parameters was on trying out
different optimizers. To the right, one can see all the
optimizers we tested.

In addition to that, we tested learning rates and
momentums for various optimizers as well as the
amount of layers in our model architecture.

For the most part, we kept our epoch size at 100 and
our batch size at 70. If we were to do this again, we
would have increased our batch size to 120 or more. We
think this would have been better as the images were
small and of low data quality and higher amount in each
batch size would have helped.

Things that stayed consistent:
• Activation type
• Loss was always measured with binary cross entropy
• Metrics was always measured as accuracy

Experiment 3:

Parameters:
• RMS Prop with default parameters
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 34 Epochs

• Highest Training Accuracy: 91%
• Highest Validation Accuracy: 87 %
• Test Accuracy: 68%

Conclusion: This was our highest training accuracy but
we can see that it overfit as our test accuracy is much
lower.

Parameters:
• RMS Prop

• Learning rate at .001, rho: 0.9
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 13 Epochs

• Highest Training Accuracy: 80%
• Val Accuracy: 74 %
• Test Accuracy: 72%

Experiment 4:

Conclusion: Our test accuracy is better here, a smaller learning
rate is good to use with RMS Prop

Experiment 5:

Parameters:
• Changed filters in Model architecture (16, 32, 32, 64, 128)
• RMS Prop

• Learning rate at .01, rho: 0.9
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 10 Epochs

• Highest Training Accuracy: 55%
• Val Accuracy: 70 %
• Test Accuracy: 49%

Conclusion: Our accuracy overall was worse here. It does not
appear that changing the filters or adding another layer helped.
In general, adding layers does not help.

Experiment 6:

Parameters:
• Changed number of filters in Model architecture (16, 32, 32,

64, 128)
• Change filter shape to (5, 5)
• RMS Prop

• Learning rate at .001
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 30 Epochs

• Highest Training Accuracy: 88%
• Val Accuracy: 86 %
• Test Accuracy: 75%

Conclusion: Our test accuracy is good here! Perhaps having a
small learning rate and large filter size helps.

Parameters:
• ADAM with default parameters
• Batch Size: 128
• Epoch Size: 100
• Callbacks using Early Stopping after 6 Epochs

• Highest Training Accuracy: 80%
• Val Accuracy: 90%
• Test Accuracy: 79%

Conclusion: Our test accuracy is great here! This is the
optimizer combined with an increase in batch size. But the
graphs look a little off and I’m not sure why.

Experiment 7:

Parameters:
• ADAM

• Learning rate at .01
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 30 Epochs

• Highest Training Accuracy: 51%
• Val Accuracy: 47%
• Test Accuracy: 49%

Experiment 8:

Conclusion: Our test accuracy is much worse here. Maybe has
to do with the learning rate and batch size.

Parameters:
• SGD

• Learning rate at .1
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 100 Epochs

• Highest Training Accuracy: 70%
• Val Accuracy: 70 %
• Test Accuracy: 71%

Experiment 9:

Conclusion: Acceptable test accuracy here but
not our best. The model trained for all the
epochs.

Experiment 10:

Parameters:
• SGD

• Learning rate at .001, epochs=100, momentum=.8,
decay rate

• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 100 Epochs

• Highest Training Accuracy: 71%
• Val Accuracy: 69 %
• Test Accuracy: 71%

Conclusion: Not overfit! Loss and Accuracy oscillate
a lot.

Experiment 11:

Parameters:
• AdaDelta

• Learning rate at .01
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 96 Epochs

• Highest Training Accuracy: 69%
• Val Accuracy: 70 %
• Test Accuracy: 71%

Conclusion: Acceptable test accuracy here but
not great. Needed to run for most Epochs.

Parameters:
• Nadam

• Learning rate at .001, beta_1=0.9, beta_2=0.999,
epsilon=1e-07,

• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 20 Epochs

• Highest Training Accuracy: 85%
• Val Accuracy: 80 %
• Test Accuracy: 78%

Experiment 12:

Conclusion: Nadam works great! This is one of our best
test accuracies. Notice the small learning rate. For next
time, make the batch size greater.

Parameters:
• Data Augmentation

• Rescale
• Flip and Rotate

• RMSProp
• Learning rate at .01, rho

at .9
• Batch Size: 100
• Epoch Size: 100
• Callbacks using Early Stopping

after 11 Epochs

• Highest Training Accuracy: 51%
• Val Accuracy: 64 %
• Test Accuracy: 49%

Experiment 13:

Conclusion: Pictured above is one image flipped and rotated.
However, this did not help increase our accuracy. Probably because
low quality satellite images don’t do as well with data augmentation

Conclusion
A Reminder of the Parameters tested:
Optimizers:
• RMSProp

o Learning Rates: .01,.001,.0001
• AdaDelta
• Adam

• Learning Rates: Default, .001
• SGD
• Nadam

Data Augmentation
Batch Size: 70, 100, 120
Epoch Size: 50, 100
Number of filters in model architecture: (16,
64, 128, 128)
(32, 64, 128, 128)
The filter size: (3,3) or (5,5)
Number of layers in model architecture: 4, 5

Best Recommendation:
We recommend using Adam with the default learning rate
and large batch and epoch size with four layers. This got us
the highest test accuracy at 79%.

Further Inquiry:
In further iterations of this project, we would have
employed more transfer learning with already constructed
models. Our research indicates that using CaffeNet or
VGG16 with SVM would have gotten use higher results
around 85%. If we had used GoogleNet with fine tuning our
results could have reached 94.1% accuracy.

Works Cited
For more information on dataset origins, please see this link.
O. Korzh, G. Cook, T. Andersen and E. Serra, "Stacking approach for
CNN transfer learning ensemble for remote sensing imagery," 2017
Intelligent Systems Conference (IntelliSys), 2017, pp. 599-608, doi:
10.1109/IntelliSys.2017.8324356.

http://www.patreo.dcc.ufmg.br/2017/11/12/brazilian-coffee-scenes-dataset/

	Identification of Coffee Cultivation Areas in Brazil
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

