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Introduction

The Problem:

Here are what the images look like:

Dataset Description Value

Number of Images 2876

Image Size 64 x 64 pixels

Number of classes 2

Balance 50/50

True Color:

This dataset features satellite images of four different states in 
Brazil. It is used to help manage and understand coffee cultivation 
management and techniques. Thus, we are trying to identify 
images that are good for growing coffee or not good. In other 
words, we are solving a binary classification problem.



Classifiers

Experiment 1:
SVM:

We ran Gridsearch CV with 3 fold cross 
validation and found that the optimal 
hyperparameters for SVM were C: .01, 
2 degrees and sigmoid Kernel. 

Accuracy for SVM with optimal 
parameters: 57%

Experiment 2:
Random Forest:

We ran Gridsearch CV with 3 fold cross 
validation and found that the optimal 
hyperparameters for Random Forest was 
a max depth of 5 and the number of 
estimators at 200.

Accuracy for Random Forest with 
optimal parameters: 59%

This accuracy isn’t great…. Let’s see if we can do better with a 
convolutional neural network



CNN Model Architecture Set Up
We set up a model architecture to use as our baseline and 
then we tweaked it for various optimizers. In this set up, we 
create four convolutional layers each with a max pooling and 
dropout layers. Additionally, our filters are 16, 64, 128 and 
128. 



Hyperparameter Tuning
Various Parameters we tested:
Optimizers:
• RMSProp

o Learning Rates: .01,.001,.0001
• AdaDelta
• Adam
• SGD
• Nadam

Batch Size: 70, 100, 120
Epoch Size: 50, 100
Number of filters in model architecture: (16, 64, 128, 128)
(32, 64, 128, 128)
The filter size: (3,3) or (5,5)
Number of layers in model architecture: 4, 5

We spent a long time tuning our model to try to 
increase the accuracy. The highest training accuracy we 
got was with the RMSProp optimizer at 91%, however 
this overfit to our model as the actual accuracy was at 
68%. 
Our major focus for parameters was on trying out
different optimizers. To the right, one can see all the 
optimizers we tested.  

In addition to that, we tested learning rates and 
momentums for various optimizers as well as the 
amount of layers in our model architecture.

For the most part, we kept our epoch size at 100 and 
our batch size at 70. If we were to do this again, we 
would have increased our batch size to 120 or more. We 
think this would have been better as the images were 
small and of low data quality and higher amount in each 
batch size would have helped.

Things that stayed consistent:
• Activation type
• Loss was always measured with binary cross entropy
• Metrics was always measured as accuracy



Experiment 3:

Parameters:
• RMS Prop with default parameters
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 34 Epochs

• Highest Training Accuracy: 91%
• Highest Validation Accuracy: 87 %
• Test Accuracy: 68%

Conclusion: This was our highest training accuracy but 
we can see that it overfit as our test accuracy is much 
lower.



Parameters:
• RMS Prop 

• Learning rate at .001, rho: 0.9
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 13 Epochs

• Highest Training Accuracy: 80%
• Val Accuracy: 74 %
• Test Accuracy: 72%

Experiment 4: 

Conclusion: Our test accuracy is better here, a smaller learning 
rate is good to use with RMS Prop



Experiment 5: 

Parameters:
• Changed filters in Model architecture (16, 32, 32, 64, 128)
• RMS Prop 

• Learning rate at .01, rho: 0.9
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 10 Epochs

• Highest Training Accuracy: 55%
• Val Accuracy: 70 %
• Test Accuracy: 49%

Conclusion: Our accuracy overall was worse here. It does not 
appear that changing the filters or adding another layer helped. 
In general, adding layers does not help.



Experiment 6: 

Parameters:
• Changed number of filters in Model architecture (16, 32, 32, 

64, 128)
• Change filter shape to (5, 5)
• RMS Prop 

• Learning rate at .001
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 30 Epochs

• Highest Training Accuracy: 88%
• Val Accuracy: 86 %
• Test Accuracy: 75%

Conclusion: Our test accuracy is good here! Perhaps having a 
small learning rate and large filter size helps.



Parameters:
• ADAM with default parameters
• Batch Size: 128
• Epoch Size: 100
• Callbacks using Early Stopping after 6 Epochs

• Highest Training Accuracy: 80%
• Val Accuracy: 90%
• Test Accuracy: 79%

Conclusion: Our test accuracy is great here! This is the 
optimizer combined with an increase in batch size. But the 
graphs look a little off and I’m not sure why.

Experiment 7: 



Parameters:
• ADAM

• Learning rate at .01
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 30 Epochs

• Highest Training Accuracy: 51%
• Val Accuracy: 47%
• Test Accuracy: 49%

Experiment 8: 

Conclusion: Our test accuracy is much worse here. Maybe has 
to do with the learning rate and batch size.



Parameters:
• SGD

• Learning rate at .1
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 100 Epochs

• Highest Training Accuracy: 70%
• Val Accuracy: 70 %
• Test Accuracy: 71%

Experiment 9:

Conclusion: Acceptable test accuracy here but 
not our best. The model trained for all the 
epochs.



Experiment 10:

Parameters:
• SGD

• Learning rate at .001, epochs=100, momentum=.8, 
decay rate

• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 100 Epochs

• Highest Training Accuracy: 71%
• Val Accuracy: 69 %
• Test Accuracy: 71%

Conclusion: Not overfit! Loss and Accuracy oscillate 
a lot.



Experiment 11: 

Parameters:
• AdaDelta

• Learning rate at .01
• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 96 Epochs

• Highest Training Accuracy: 69%
• Val Accuracy: 70 %
• Test Accuracy: 71%

Conclusion: Acceptable test accuracy here but 
not great. Needed to run for most Epochs.



Parameters:
• Nadam

• Learning rate at .001, beta_1=0.9, beta_2=0.999, 
epsilon=1e-07,

• Batch Size: 70
• Epoch Size: 100
• Callbacks using Early Stopping after 20 Epochs

• Highest Training Accuracy: 85%
• Val Accuracy: 80 %
• Test Accuracy: 78%

Experiment 12: 

Conclusion: Nadam works great! This is one of our best 
test accuracies. Notice the small learning rate. For next 
time, make the batch size greater.



Parameters:
• Data Augmentation

• Rescale
• Flip and Rotate

• RMSProp
• Learning rate at .01, rho 

at .9
• Batch Size: 100
• Epoch Size: 100
• Callbacks using Early Stopping 

after 11 Epochs

• Highest Training Accuracy: 51%
• Val Accuracy: 64 %
• Test Accuracy: 49%

Experiment 13:

Conclusion: Pictured above is one image flipped and rotated. 
However, this did not help increase our accuracy. Probably because 
low quality satellite images don’t do as well with data augmentation



Conclusion
A Reminder of the Parameters tested:
Optimizers:
• RMSProp

o Learning Rates: .01,.001,.0001
• AdaDelta
• Adam

• Learning Rates: Default, .001
• SGD
• Nadam

Data Augmentation
Batch Size: 70, 100, 120
Epoch Size: 50, 100
Number of filters in model architecture: (16, 
64, 128, 128)
(32, 64, 128, 128)
The  filter size: (3,3) or (5,5)
Number of layers in model architecture: 4, 5

Best Recommendation:
We recommend using Adam with the default learning rate 
and large batch and epoch size with four layers. This got us 
the highest test accuracy at 79%.

Further Inquiry:
In further iterations of this project, we would have 
employed more transfer learning with already constructed 
models. Our research indicates that using CaffeNet or
VGG16 with SVM would have gotten use higher results 
around 85%. If we had used GoogleNet with fine tuning our 
results could have reached 94.1% accuracy. 
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