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Identification of Coffee Cultivation in Brazil 
Section 1: Introduction: 

Coffee cultivation is an important part of the economy in Brazil and sustains various 
communities across the country. Thus, a predictive model that can classify satellite images and 
whether they are good for coffee cultivation or not good for coffee cultivation is important to 
identifying key areas that can create new economic capital for farmers. Additionally, it will help 
future farmers avoid trying to cultivate coffee crops in areas not conducive to the crops and 
investigate different crop management techniques. 
   
 
Section 2: Data: 
 The data set is a “composition of scenes taken by SPOT sensor in 2005 over four counties 
in the State of Minas Gerais, Brazil: Arceburgo, Guaranesia, Guaxupé and Monte Santo.”1It is a 
balanced dataset with 4 folds of 600 images each and a fifth fold with 476 images. For the 
purposes of my analysis, I have combined all folds together into one dataset with 2786 images 
and then split this data into a 60% train data and 40% test data. Our dataset is not large, it is less 
than 3000 images which can affect accuracy. Each image has a pixel size of 64 x 64. There are 
three channels to the image from the Green, Red and Near Infrared Bands. This is important to 
note as most CNN’s are trained on RGB images.2 The images are also of relatively low data 
quality with blurriness and lots of noise. One way to solve the issue of a small number of pixels 
is to upscale the data and make the images larger. I chose not to do this because I knew it would 
be computationally expensive later on. 
 Three other challenges mentioned about this dataset are its intra-class variance, scenes 
captured from different plant ages, and the dataset contains “images with spectral distortions 
because of shadows”.3 For more information on dataset origins, please see this link.  
 The image data and label data was saved separately in the dataset folder so I had to merge 
them back together in my notebook. I then scaled the images by dividing by 255 so they would 
be between 0 and 1. I also did PCA for our first two classifiers. I did not set a number of 
components and decided to cut off the components at 1500 as I saw that 1500 components 
explained 93% of the variance.  
 Below, I’ve visualized some of the images. Figure 1 visualizes them using Montage RGB 
which changes the colors slightly. Figure 2 shows the images visualized in their true colors. As 
one can see, the images are relatively blurry and pixelated. 

 
1 O. A. B. Penatti, K. Nogueira, J. A. dos Santos. Do Deep Features Generalize from Everyday Objects to Remote 
Sensing and Aerial Scenes Domains? In: EarthVision 2015, Boston. IEEE Computer Vision and Pattern Recognition 
Workshops, 2015. 
2 O. Korzh, G. Cook, T. Andersen and E. Serra, "Stacking approach for CNN transfer learning ensemble for remote 
sensing imagery," 2017 Intelligent Systems Conference (IntelliSys), 2017, pp. 599-608, doi: 
10.1109/IntelliSys.2017.8324356. 
3 Ibid. 

http://www.patreo.dcc.ufmg.br/2017/11/12/brazilian-coffee-scenes-dataset/
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Section 3: Methods: 
 Our problem is one of binary classification, our images will either be a coffee image or a 
non coffee image. Our perfomance criterion throughout was accuracy as I wanted to be able to 
compare my classifier models with my CNN models. Because my image size was relatively 
small and my dataset was not very large, I was lucky as I was able to tune my CNN with many 
different parameters.  
 I first chose to test my images using an SVM classifier as these work well on binary 
classification problems. Using GridSearch CV with 3 fold cross validation, I found that the 
optimal hyperparameters for SVM were C: .01, 2 degrees and the Sigmoid Kernel. However, the 
accuracy from this classifier was only at 51% after outer cross validation was done. I tried to 
improve this accuracy with a Random Forest in which I found the optimal parameters were a 



max depth of 5 and 200 estimators. However, I only improved the accuracy by 3%, getting 54% 
test accuracy. 
 Because these models weren’t giving me good accuracy, I decided to train a 
Convolutional Neural Net Model. I chose this model because I knew it would be good at learning 
images and could have an adequate response to my binary classification problem. My loss type 
for the CNN was always measured with binary cross entropy. As mentioned before, the metric 
measure was accuracy.  
 
Section 3.2: CNN Architecture 
 My initial CNN Architecture set up consisted of four layers with one convolutional layer, 
followed by a max pooling layer and then a drop out layer. At the end, there were two dense 
layers. I chose to make the initial number of filters at 16, 64, 128 and 128. I chose this because I 
wanted to the amount of filters to increase in size but to start out small. Additionally, I chose the 
kernel size to be (3,3). In fine tuning the model, I played with both the number of filters and the 
kernel size. The activation network stayed consistent throughout. Figure 3 below features the 
model architecture set up in more detail.  
 

 
Figure 3 

Section 3.3: Hyper Parameter Tuning 
 

Once I had the model architecture set up, I wanted to start parameter tuning with a focus 
on different types of optimizers. I tried six different optimizers: RMSProp, AdaDelta, Adam, 
AdaGrad, SGD, and Nadam. The main objective of these optimizers is to efficiently calculate the 



parameters/weights of our model to minimize the loss function. Currently, Adam is the most 
popular optimizer used in neural networks today. Within each of these optimizers, I tried 
different learning rates and momentum values. Testing different learning rates is important 
because if a learning rate is too small, it will take a neural network too long to converge. If it is 
too big, the network will not converge at all. Momentum is important because it causes the 
optimization algorithm to resist changes in direction. Momentum slows the oscillation of our loss 
especially in high curvature surfaces. If the momentum rate is large, the learning rate should be 
smaller.4  
 Concurrent with the optimizers, I also experimented with different batch sizes and epoch 
sizes. For the most part, I remained consistent in choosing 70 for the batch size and 100 for the 
epoch size with an early stopping callback so the model rarely ran to 100 epochs. An epoch 
means that each sample in the training dataset has had an opportunity to update the internal 
model parameters. Therefore, we set it at a higher amount in addition to using the early stopping 
callback with a patience of 5 to monitor the validation loss and stop if it was only oscillating. 
The smaller the batch size, typically the faster the network trains. However, having a too small 
batch size could mean that the network is missing vital information to train.  Within our fit call, 
we also chose to have a validation split at .2 to measure our accuracy before we evaluated on our 
test set.  
 Lastly, I tried to do Data Augmentation as a preprocessing step to increase the “amount” 
of data and to improve accuracy. For Data Augmentation, I resized the images to a lareger size 
and then also did a random flip and random rotation to the images. Figure 4 shows one image 
and how it has been data augmented.  

 
Figure 4 

Section 4: Results 
The table below lists each combination of various hyperparameters I tried as I was 

finetuning my network. Figures 5, 6 and 7 also feature the Training and Validation Loss and 
Accuracy Graphs for the top three performing optimizers: Adam, Nadam, and RMS Prop. Each 
of these graphs, should show the loss decreasing and then plateauing and then the accuracy 

 
4 https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0 

https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0


increasing. For accuracy, a low validation curve in contrast to training accuracy shows strong 
overfitting. 
 
 
 
 
 
 
Combination of Hyper Parameters Train 

Accuracy 
Validation 
Accuracy 

Test 
Accuracy 

• RMS Prop with default parameters 
• Batch Size: 70 
• Epoch Size: 100 

80% 79% 72% 

• RMS Prop  
• Learning rate at .001, rho: 0.9 

• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 13 

Epochs 
 

91% 87% 68% 

• Changed filters in Model architecture (16, 
32, 32, 64, 128) 

• RMS Prop  
• Learning rate at .01, rho: 0.9 

• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 10 

Epochs 
 

55% 70% 49% 

• Changed number of filters in Model 
architecture (16, 32, 64, 128) 

• Change filter shape to (5, 5) 
• RMS Prop  

• Learning rate at .001 
• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 30 

Epochs 
 

88% 86% 75% 
 

• Changed Model Architecture to one layer 
with 32 filters, flatten, dense layer, kernel 
initializer of ‘he_uniform’ 

• ADAM with default parameters 
• Batch Size: 128 
• Epoch Size: 100 

80% 90% 79% 



• Callbacks using Early Stopping after 6 
Epochs 

 
• ADAM 

• Learning rate at .01 
• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 30 

Epochs 
 

51% 47% 49% 

• SGD 
• Learning rate at .1 

• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 100 

Epochs 
 

70% 70% 71% 

• SGD 
• Learning rate at .001, epochs=100, 

momentum=.8, decay rate 
• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 100 

Epochs 
 

71% 69% 71% 

• AdaGrad Optimizer 
• Learning rate of .001 
• iIitial_accumulator_value=0.1 
• Batch Size: 100 
• Epoch Size: 50 
•  

69% 68% 70% 

• AdaDelta 
• Learning rate at .01 
• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 96 

Epochs 

69% 70% 71% 

• Nadam 
• Learning rate at .001, beta_1=0.9, 

beta_2=0.999, epsilon=1e-07, 
• Batch Size: 70 
• Epoch Size: 100 
• Callbacks using Early Stopping after 20 

Epochs 
 

85% 80% 78% 

• Data Augmentation 51% 64% 49% 



• Rescale 
• Flip and Rotate 
• RMSProp 
• Learning rate at .01, rho at .9 
• Batch Size: 100 
• Epoch Size: 100 
• Callbacks using Early Stopping after 11 

Epochs 
 

  
Figure 5: Adam Loss and Accuracy Graphs 

 
 

 
Figure 6: Nadam Loss and Accuracy Graphs 

 



 
Figure 7: RMS Prop Loss and Accuracy Graphs 

 
 
 
 
Section 5: Discussion 

Within CNN, our best accuracy score was with the ADAM optimizer at 79% test 
accuracy. This result was closely followed by Nadam at 78% and RMSprop at 76%. This 
accuracy result is significantly higher than both the SVM and Random Forest scores at 57% and 
59%. However, I would have liked to get the accuracy higher to the mid 80’s or low 90’s. It was 
frustrating when the training accuracy was high but that the network never performed as well on 
the test set. One challenge to this accuracy score was the data itself. The images were small and 
blurry. They were abstract landscape images and did not provide as many indicators at difference 
as other image datasets might have. One thing I could have done to improve this would have 
been to up-sample the images to a larger pixel size. However, this is computationally expensive 
and I did not have the timeline to spend on this. I also should have investigated the color 
channels of the images and created a better understanding around optimizing the accuracy of a 
Green, Red and Near-Infrared channel dataset. This was one limitation of my modeling. 

Another reason why the Adam optimizer experiment worked the best was because the 
model architecture was less complex than the main one I used and because I deviated in using a 
bigger batch size. Because I was trying to maintain constant variables throughout my 
experiments, I chose somewhat arbitrarily at the beginning, to have four layers in my model 
architecture. Now, I see that the modeling could have benefited from fewer layers and the 
accuracy might have increased. I also chose 70 as a constant batch size but as I got deeper in my 
work I realized that a more optimal batch size should be larger, somewhere around 120 perhaps. 
This is because 70 is too small of a number to train on. The epoch size of 100 was good and the 
early stopping callback often stopped it before that. 

Approaches that didn’t work well were the SGD optimizer and Data Augmentation. Both 
did not produce high test accuracy. Data Augmentation does not work that well on small satellite 
images. SGD is a less powerful optimizer than Adam, Nadam, or RMSProp. Interestingly, when 
I used Adam on the standard architecture I had been using, it performed way worse. Thus, a large 
part of the high accuracy was a smaller layer network. I wish I had realized this earlier and 
changed my other experiments to reflect this. 

In the future, I would like to experiment more with the learning rates for both Adam, 
Nadam and RMSProp as I identified those as the best performing optimizers. Importantly, none 
of these optimizers overfit on the test set. Unfortunately, I ran out of time and found that there 



was a large number of combinations that could have been tried. I also wish I had been able to re-
visualize some of the datasets to check how the labels were being predicted for. In the future, I 
will work more on evaluating my results.  

For future inquiry, I hope to employ transfer learning with pre-trained networks. As I was 
researching for this report, I found an article that was able to achieve higher accuracy using pre-
trained models. With finetuning in GoogleNet, the researchers were able to achieve 94% 
accuracy. Using CaffeNet and SVM, without fine tuning, they were able to achieve 85%.5 In the 
future, I hope to continue to improve on my accuracy scores with these pre-trained models.  

Ultimately, I was able to solve the problem I set out to: label coffee and non coffee 
images correctly. I was able to do this with 79% accuracy. Hopefully, this approach and model 
can be used in helping the Brazilian government and farmers determine the optimal place to 
create more coffee plantations and cultivate crops.  
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